1260 VXI SWITCHING CARD
 8 CHANNEL, 25A HIGH POWER SWITCH MODULE

MODEL 1260-23

PUBLICATION NO. 980673-066
RACAL INSTRUMENTS

United States
(Corporate Headquarters and Service Center)
4 Goodyear Street, Irvine, CA 92618

Tel: (800) 722-2528, (949) 859-8999; Fax: (949) 859-7139
5730 Northwest Parkway Suite 700, San Antonio, TX 78249
Tel: (210) 699-6799; Fax: (210) 699-8857

Europe

(European Headquarters and Service Center)
18 Avenue Dutartre, 78150 LeChesnay, France
Tel: +33 (0)1 392322 22; Fax: +33 (0)1 39232225
29-31 Cobham Road, Wimborne, Dorset BH21 7PF, United Kingdom
Tel: +44 (0) 1202872800 ; Fax: +44 (0) 1202870810
Via Milazzo 25, 20092 Cinisello B, Milan, Italy
Tel: +39 (0)2 6123 901; Fax: +39 (0)2 61293606
Racal Instruments Group Limited, Technologie Park, D-51429 Bergisch Gladbach, Germany
Tel: +49 2204 844205; Fax: +49 2204844219
info@racalinstruments.com
sales@racalinstruments.com
helpdesk@racalinstruments.com
http://www.racalinstruments.com
info@racalinstruments.de
www.racalinstruments.de

PUBLICATION DATE: August 25, 2005

Copyright 2005 by Racal Instruments, Inc. Printed in the United States of America. All rights reserved. This book or parts thereof may not be reproduced in any form without written permission of the publisher.

THANK YOU FOR PURCHASING THIS RACAL INSTRUMENTS PRODUCT.

For this product, or any other Racal Instruments product that incorporates software drivers, you may access our web site to verify and/or download the latest driver versions. The web address for driver downloads is:

http://www.racalinstruments.com/downloads

If you have any questions about software driver downloads or our privacy policy, please contact us at
info@racalinstruments.com

WARRANTY STATEMENT

All Racal Instruments, Inc. products are designed and manufactured to exacting standards and in full conformance to Racal's ISO 9001:2000 processes.

This warranty does not apply to defects resulting from any modification(s) of any product or part without Racal Instruments express written consent, or misuse of any product or part. The warranty also does not apply to fuses, software, non-rechargeable batteries, damage from battery leakage, or problems arising from normal wear, such as mechanical relay life, or failure to follow instructions.

This warranty is in lieu of all other warranties, expressed or implied, including any implied warranty of merchantability or fitness for a particular use. The remedies provided herein are buyer's sole and exclusive remedies.

For the specific terms of your standard warranty, or optional extended warranty or service agreement, contact your Racal customer service advisor. Please have the following information available to facilitate service.

1. Product serial number
2. Product model number
3. Your company and contact information

You may contact your customer service advisor by:

E-Mail:	Helpdesk@racalinstruments.com	
Telephone:	+18007223262 $+44(0) 8706080134$ (USA)	
Fax:	+19498597309	
		$+44(0) 1628662017$

RETURN of PRODUCT

Authorization is required from Racal Instruments before you send us your product for service or calibration. Call your nearest Racal Instruments support facility. A list is located on the last page of this manual. If you are unsure where to call, contact Racal Instruments, Inc. Customer Support Department in Irvine, California, USA at 1-800-722-3262 or 1-949-859-8999 or via fax at 1-949-859-7139. We can be reached at: helpdesk@racalinstruments.com.

PROPRIETARY NOTICE

This document and the technical data herein disclosed, are proprietary to Racal Instruments, and shall not, without express written permission of Racal Instruments, be used, in whole or in part to solicit quotations from a competitive source or used for manufacture by anyone other than Racal Instruments. The information herein has been developed at private expense, and may only be used for operation and maintenance reference purposes or for purposes of engineering evaluation and incorporation into technical specifications and other documents which specify procurement of products from Racal Instruments.

DISCLAIMER

Buyer acknowledges and agrees that it is responsible for the operation of the goods purchased and should ensure that they are used properly and in accordance with this handbook and any other instructions provided by Seller. Racal Instruments products are not specifically designed, manufactured or intended to be used as parts, assemblies or components in planning, construction, maintenance or operation of a nuclear facility, or in life support or safety critical applications in which the failure of the Racal Instruments product could create a situation where personal injury or death could occur. Should Buyer purchase Racal Instruments product for such unintended application, Buyer shall indemnify and hold Racal Instruments, its officers, employees, subsidiaries, affiliates and distributors harmless against all claims arising out of a claim for personal injury or death associated with such unintended use.

FOR YOUR SAFETY

Before undertaking any troubleshooting, maintenance or exploratory procedure, read carefully the WARNINGS and CAUTION notices.

CAUTION
RISK OF ELECTRICAL SHOCK DO NOT OPEN

4
This equipment contains voltage hazardous to human life and safety, and is capable of inflicting personal injury.

If this instrument is to be powered from the AC line (mains) through an autotransformer, ensure the common connector is connected to the neutral (earth pole) of the power supply.

Before operating the unit, ensure the conductor (green wire) is connected to the ground (earth) conductor of the power outlet. Do not use a two-conductor extension cord or a three-prong/two-prong adapter. This will defeat the protective feature of the third conductor in the power cord.

Maintenance and calibration procedures sometimes call for operation of the unit with power applied and protective covers removed. Read the procedures and heed warnings to avoid "live" circuit points.

Before operating this instrument:

1. Ensure the proper fuse is in place for the power source to operate.
2. Ensure all other devices connected to or in proximity to this instrument are properly grounded or connected to the protective third-wire earth ground.

If the instrument:

- fails to operate satisfactorily
- shows visible damage
- has been stored under unfavorable conditions
- has sustained stress

Do not operate until, performance is checked by qualified personnel.

Table of Contents

Chapter 1 1-1
SPECIFICATIONS 1-1
Introduction. 1-1
Specifications 1-3
Power Dissipation. 1-4
About MTBF 1-5
Ordering Information 1-6
Chapter 2 2-1
INSTALLATION INSTRUCTIONS 2-1
Unpacking and Inspection 2-1
Reshipment Instructions 2-1
Option 01T Installation 2-1
Module Installation 2-2
Module Configuration 2-2
Front Panel Connectors 2-4
Mating Connectors 2-8
More About Maximum Current Ratings 2-9
Installation 2-9
Chapter 3 3-1
MODULE OPERATION 3-1
Operating Modes 3-1
Operating In Message-Based Mode 3-3
Channel Descriptors For The 1260-23 3-3
Reply To The MOD:LIST? Command 3-5
Operating The 1260-23 in Register-Based Mode 3-5
Chapter 4 4-1
PRODUCT SUPPORT 4-1
Product Support 4-1
Reshipment Instructions 4-1
Support Offices. 4-2
Repair and Calibration Request Form 4-3

List of Figures

Figure 1-1, The 1260-23 1-2
Figure 2-1, 1260-23, Switch Block Diagram 2-3
Figure 2-2, Front Panel Connector Pin Numbering 2-5
Figure 3-1, Message-Based Mode of Operation 3-1
Figure 3-2, Register-Based Mode of Operation 3-2
Figure 3-3, 1X4 Switch 3-7
Figure 3-4, 2X2 Switch 3-8
Figure 3-5, 1X2 Switch 3-9

List of Tables

Table 2-1, 1260-23 Front-Panel Connections \& Commands 2-6
Table 2-2, Mating Connectors and Pins 2-8
Table 3-1, Control Register Channel Assignments 3-10
Table 3-2, Status Register Channel Assignments 3-10
Table 3-3, Registers Values 3-11

This page was left intentionally blank.

Chapter 1 SPECIFICATIONS

Introduction

The 1260-23 is a High Power VXI Switch Module developed for the Racal 1260 Series of switch modules.

The 1260-23 is available configured from the factory and can be ordered with the Option-01T Message Based Interface.

The following features are included in the 1260-23

- Message Based Interface Option available.
- Supports coil voltage Read Back to test coils are driven.
- Data-Driven embedded descriptor, allowing immediate use with any Option-01T switch controller, regardless of firmware revision level.

The $1260-23$ is a high power, single-wire switching module that consists of five 1×4 switches, two 2×2 ganged switches and one 1×2 switch. Each switch can handle current up to 25.0 Amps. The 1260-23 plug-in fits into a standard VXI chassis.

Figure 1-1, The 1260-23

Specifications	Bandwidth (-3dB)	300 KHz
	Crosstalk Isolation DC to 100 KHz 100 KHz to 300 KHz	$\begin{aligned} & >60 \mathrm{~dB} \\ & >50 \mathrm{~dB} \end{aligned}$
	Channel Crosstalk DC to 100 KHz 100 KHz to 300 KHz	$\begin{aligned} & <-60 \mathrm{~dB} \\ & <-50 \mathrm{~dB} \end{aligned}$
	Switching Voltage AC DC	130 V, Max 32 V, Max
	Switching Current AC DC	25 A, Max 25 A, Max
	Switching Power AC DC	2875 VA, Max 700 W, Max
	Path resistance	< $20 \mathrm{~m} \Omega$ @ 25 A
		< $100 \mathrm{~m} \Omega$ @ 1 mA
	Capacitance Channel-Chassis Open-Channel	$\begin{aligned} & <40 \mathrm{pF} \\ & <40 \mathrm{pF} \end{aligned}$
	Insulation resistance	$>10^{9} \Omega$
	Relay Settling Time	< 25 ms
	Breakdown Voltage	> 1000 V DC
	Shock	$30 \mathrm{~g}, 11 \mathrm{~ms}, 1 / 2$ sine wave
	Vibration	0.013 in. P-P, 5-55 Hz
	Bench Handling	$4 \mathrm{in} ., 45^{\circ}$
	Cooling	See 1260-100 cooling data
	Temperature Operating Non-operating	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+55^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{aligned}$
	Relative Humidity	95%, non-condensing at $<30^{\circ} \mathrm{C}$

Altitude	
Operating	10,000 feet
Non-operating	15,000 feet
Power Requirements (with Option-01T)	
+5V	0.483 A dynamic current 1.805 A peak current
+12V	2.216 A dynamic current 1.800 A peak current
Cooling (25\% Relays energized operating at full rated current)	
	4.25 Liters/sec @ $0.394 \mathrm{mmH}_{2} \mathrm{O}$
Weight	
with Option-01T	3.0 lbs. (1.361 kg)
w/o Option-01T	3.0 lbs. (1.361 kg)
MTBF (MIL-HDBK-217-FN2 method)	
Excluding relays	1,500,000 hours
Including relays	285,000 hours
Relay Life Expectancy	
Mechanical	5,000,000 operations
Electrical	10,000 operations at full load
Dimensions (Module)	C-Size, Single Slot VXI bus Module

Power Dissipation

While the cooling of the $1260-23$ is dependent upon the chassis into which it is installed, the carrier can normally dissipate approximately 100 W . Care must be taken, then, in the selection and loading of the plug-in modules used in the carrier. It is not possible to fully load the carrier, energize every relay, and run full power through every set of contacts, all at the same time. In practice this situation would never occur.

To properly evaluate the power dissipation of the plug-in modules, examine the path resistance, the current passing through the relay contacts, power to the coils, the ambient temperature, and the number of relays closed at any one time.

For example, if a 1260-23 module (containing 20 relays) has 5 relays closed, passing a current of 25 A , then:

Total power dissipation =
[(current) ${ }^{2}$ * (path resistance) * 5] + (coil power * 5) + (quiescent power)

By substituting the actual values:
Total power dissipation $=$

$$
\left[(25 \mathrm{~A})^{2} *(.010 \Omega) * 5\right]+\left[(12 \mathrm{~V})^{2} / 80 \Omega * 5\right]+(11.0 \mathrm{~W})
$$

$=51.25 \mathrm{~W}$ at $55^{\circ} \mathrm{C}$
This is acceptable power dissipation for an individual plug-in module. The overall module power dissipation is approximately 51.25 W , which is well within the cooling available in any commercial VXIbus chassis. In practice, rarely are more than 25\% of the module's relays energized simultaneously, and rarely is full rated current run through every path. In addition, the actual contact resistance is typically one-half to one-fourth the specified maximum, and temperatures are normally not at the rated maximum. The typical power dissipation for each module should be no more than 25.6 W .

Most users of a signal-type switch, such as the 1260-23, switch no more than a few hundred milliamperes and are able to energize all relays simultaneously, should they so desire.

Additionally, if fewer plug-in modules are used, more power may be dissipated by the remaining cards. By using a chassis with high cooling capacity, such as the Racal Instruments 1261B, almost any configuration may be realized.

About MTBF

The 1260-23 MTBF is $1,500,000$ hours, calculated in accordance with MIL-HDBK-217-FN2, with the exception of the electromechanical relays. Relays are excluded from this calculation because relay life is strongly dependent upon operating conditions. Factors affecting relay life expectancy are:

1. Switched voltage
2. Switched current
3. Switched power
4. Maximum switching capacity
5. Maximum rated carrying current
6. Load type (resistive, inductive, capacitive)
7. Switching repetition rate
8. Ambient temperature

For example, under a given condition of 20 A switched current, 10 cycles/hour switch rate, and $30^{\circ} \mathrm{C}$ ambient temperature, MTBF is calculated to be 285,000 hours.

The most important factor is the maximum switching capacity, which is an interrelationship of maximum switching power, maximum switching voltage and maximum switching current. When a relay operates at a lower percentage of its maximum switching capacity, its life expectancy is longer. The maximum switching capacity specification is based on a resistive load, and must be further de-rated for inductive and capacitive loads.

For more details about the above life expectancy factors, refer to the data sheet for the switch plug-in module.

The relay used on the 1260-23 plug-in is Racal part no. 310315001. The relay manufacturer's specifications for this relay are:

Life Expectancy
Mechanical 5,000,000 operations
Electrical
10,000 operations at full rated load (resistive)

For additional relay specifications, refer to the relay manufacturer's data sheet.

Ordering Information

Listed below are part numbers for the 1260-23 switch module. The 1260-23 uses a single type of mating connector.

ITEM	DESCRIPTION	PART \#
1260-23 Switch Module w/o-01T	8 Channel, 25 A, 4 SP4T, 2 DPDT, 1 SPDT Power Switch Consists of: $1260-23 ~ A s s y . ~$	408005
	1260-23 manual	408032 $980673-066$
Option-01T	Option-01T (installed) Option-01T (spare) Instruction Manual for Option-01T (Must be added w/ Option-01T installed)	$407531-001$ $980806-999$
$1260-23$ Connector Mating Kit	Consists of: $3 \quad 16-p i n ~ m a t i n g ~ c o n n e c t o r ~ s h e l l s ~$ $54 ~ f e m a l e ~ c o n n e c t o r ~ p i n s ~$	407917
Additional Manual		$980673-066$

Chapter 2

INSTALLATION INSTRUCTIONS

Unpacking and Inspection

SENSITIVE ELECTRONIC DEVICES
DO NOT SHIP OR STORE NEAR
STRONG EECTROSTATC
STRONG ELECTROSTATIC,
EECTROMAGETC.MACNETCO
RADOACTIVE FILLDS

Reshipment Instructions

Option 01T Installation

1. Before unpacking the switching module, check the exterior of the shipping carton for any signs of damage. All irregularities should be noted on the shipping bill and reported.
2. Remove the instrument from its carton, preserving the factory packaging as much as possible.
3. Inspect the switching module for any defects or damage. Immediately notify the carrier if any damage is apparent.
4. Have a qualified person check the instrument for safety before use.
5. Use the original packing material when returning the switching module to Racal Instruments for servicing. The original shipping carton and the instrument's plastic foam will provide the necessary support for safe reshipment.
6. If the original packing material is unavailable, wrap the switching module in an ESD Shielding bag and use plastic spray foam to surround and protect the instrument.
7. Reship in either the original or a new shipping carton.

Installation of the Option 01T is described in the Installation and Setup section of the 1260A-Option 01T Users Manual, Publication No. 980806-999.

Module Installation

Module Configuration

Installation of the 1260-23 Switching Module into a VXI mainframe, including the setting of switches SW1-1 through SW1-4, SW2, and SW3, is described in the Setup Section of the 1260A Option 01T Users Manual, Publication No. 980806-999.

The 1260-23 is an 8-channel module consisting of 20 individual SPDT relay switches. The relay architecture consists of $51 \times 4,2$ 2×2, and 11×2.

For a block diagram of the switches used on the 1260-23, refer to Figure 2-1.

Figure 2-1, 1260-23, Switch Block Diagram

Front Panel Connectors

The 1260-23 has three 16-pin front-panel connectors, labeled J200, J201 and J202. It has one pin for each input and one for each output. See Figure 2-2 for pin numbering. Table 2-1 shows the mapping of channel numbers to connector pins. Information about available mating connectors is provided in Table 2-2.

Figure 2-2, Front Panel Connector Pin Numbering

Table 2-1, 1260-23 Front-Panel Connections \& Commands

SW	Function	Connector	Function	Connector	Command Syntax
0	COM0	J200-1		C	
	CH00	J200-2		0	CLOSE(@1(00))
	CH01	J200-3		1	CLOSE(@1(01))
	CH02	J200-9		2	CLOSE(@1(02))
	CH03	J200-10		3	CLOSE(@1(03))
1	COM1	J200-11		C	
	CH10	J200-12		0	CLOSE(@1(10))
	CH11	J200-13		1	CLOSE(@1(11))
	CH12	J200-4		2	CLOSE(@1(12))
	CH13	J200-5		3	CLOSE(@1(13))
2	COM2	J200-6		C	
	CH20	J200-7		0	CLOSE(@1(20))
	CH21	J200-8		1	CLOSE(@1(21))
	CH22	J200-14		2	CLOSE(@1(22))
	CH23	J200-15		3	CLOSE(@1(23))
3	СОМ3	J201-1		C	
	CH30	J201-2		0	CLOSE(@1(30))
	CH31	J201-3		1	CLOSE(@1(31))
	CH32	J201-9		2	CLOSE(@1(32))
	CH33	J201-10		3	CLOSE(@1(33))
4	COM4	J201-6		C	
	CH40	J201-7		0	CLOSE(@1(40))
	CH41	J201-8		1	CLOSE(@1(41))
	CH42	J201-14		2	CLOSE(@1(42))
	CH43	J201-15		3	CLOSE(@1(43))

$\mathbf{5}$	COM5A	J202-1	COM5B	J202-9	C	
	CH5A	J202-2	CH5B	J202-10	NC	OPEN(@1(50))
	CH5A	J202-3	CH5B	J202-11	NO	CLOSE(@1(50))
$\mathbf{6}$	COM6A	J202-4	COM6B	J202-12	C	
	CH6A	J202-5	CH6B	J202-13	NC	OPEN(@1(60))
	CH6A	J202-6	CH6B	J202-14	NO	CLOSE(@1(60))
7	COM7	J202-7			C	
	CH7	J202-8			NC	OPEN(@1(70))
	CH7	J202-15			NO	CLOSE(@1(70))

Mating Connectors

Mating connector accessories are available from Positronic:
The cable assembly should be made from at least 12-14 AWG wire. The mating contacts are crimp style and can handle wire up to 12 AWG.

After wire attachment, the pin is inserted in the housing and will snap into place, providing positive retention. To ensure that the pin is locked into place, the assembler should pull on the wire after insertion.

Refer to Table 2-1 for channel-to-pin mapping information. Table 2-2 contains manufacture's part numbers for the connector housing and contacts.

Table 2-2, Mating Connectors and Pins

Manufacturer	Mfr. P/N	Description
Racal	407917	$1260-23$ Connector Mating Kit
Positronic	PLB16F0000	Connector block, 16- position. Mates with front-panel connector. Pins sold separately.
Positronic	FC112N2S	Female contact, crimp type, for up to 12 AWG wire. Mates with front- panel connector pins. Low resistance contacts.

More About Maximum Current Ratings

The front panel connector and pins are rated for 25 A per pin, with all channels conducting full-rated current. The relays are rated at 25 A . This keeps the temperature rise within $20^{\circ} \mathrm{C}$. It should be noted that with all electromechanical relays, the higher the switched power (voltage times current), the shorter the useful life of the relays.

Definitions:

- Max current carrying capacity

The maximum current that the relay can conduct if the relay is not switched while voltage is applied. The maximum current carrying capacity is affected by the size of the conducting section of the contact at its smallest area. The listed values are obtained from several tests in laboratories under roomtemperature conditions $\left(21^{\circ} \mathrm{C}\right)$. The contact is considered to be in free air. The maximum current carrying for the $1260-23$ is 25 A .

- Max operating current

The current the contacts can switch while conducting, without deteriorating. This depends on working conditions, such as dissipated heat, cooling provisions, ambient temperature, insulation material, etc. The maximum operating current for the $1260-23$ is 25 A .

- Recommended continuous current

The maximum current recommended for indefinitely-long time periods. The primary concern here is the heat generated in the relay. This specification can be applied for normal working conditions. The specification includes a safety margin. However, there are restrictions in the application of the given values. The most important restriction is the cross-sectional area of the connecting wire, insulation temperature range, and wire bundling. The recommended continuous current for the $1260-23$ is 25 A .

Installation

To install the 1260-23 Switching Module into a VXI mainframe chassis, engage the printed circuit board into the grooves of the desired chassis slot. Slide the 1260-23 into the chassis until its connector mates with the connector on the chassis backplane. Push firmly to fully seat the connector. Tighten the two retaining screws at the top and bottom of the 1260-23 module.

This page was left intentionally blank.

Chapter 3

Operating Modes

The 1260-23 may be operated either in message-based mode or in register-based mode.

In the message-based mode, the 1260-01T switch controller interprets commands sent by the slot 0 controller, and determines the appropriate data to send to the control registers of the 1260-23 module.

A conceptual view of the message-based mode of operation is shown in Figure 3-1 below.

Figure 3-1, Message-Based Mode of Operation

In the register-based mode, the user writes directly to the control registers on the 1260-23 module. The 1260-01T command module does not monitor these operations, and does not keep track of the relay states on the 1260-23 module in this mode.

A conceptual view of the register-based mode is shown in Figure 3-2 below.

Figure 3-2, Register-Based Mode of Operation

Since the 1260-01T switch controller does not keep track of relay states during the register-based mode, it is advisable to use either the message-based or the register-based mode, and continue to use the same mode throughout the application program.

In general, the message-based mode of operation is easier to use with utility software such as the National Instruments VXI Interactive Control (VIC) program. The message-based mode allows the user to send ASCII text commands to the 1260-01T and to read replies from the 1260-01T. In addition, some features, such as the SCAN list, are available only in the message-based mode of operation.

The register-based mode provides faster control of relay channels. In this mode, relay operations are processed in less than 9 microseconds, not counting relay settling time or software overhead inherent in I/O libraries such as VISA. To determine the relay settling time, refer to Relay Settling Time in the Specifications section.

Consult the 1260-01T User's Manual for a comparison of the message-based and register-based modes of operation.

Operating In
 Message-Based
 Mode

Channel Descriptors For The 1260-23

The standard 1260-01T commands are used to operate the 126023 module. These commands are described in the 1260-01T User's Manual. Table 2-1 shows the channel commands for the 1260-23.

Each 1260-01T relay command uses a channel descriptor to select the channel(s) of interest. The syntax for a channel descriptor is the same for all 1260 series modules. In general, the following syntax is used to select a single channel:
(@ <module address> (<channel>))

Where:
<module address> is the address of the 1260-23 module, as set by the logical address DIP switch SW1 on the 1260-23.

The module address is a number from 1 through 12, inclusive.
Set the module addresses for the 1260-23 and other 1260-Series modules so that no address is used by more than one 1260-Series module. For instructions on setting module addresses for a 1260-Series module, see the label on the side panel of the module.
<channel range> ::= <channel number>:<channel number>|
<channel number>,<channel number>| <channel number>
<Channel number> ::= <Mux><channel>
<Mux> ::= 00 to 04 for 1×4 switches
05 to 07 for $2 \times 2 / 1 \times 2$ switches
<channel> ::= 0 to 3 for 1×4 switches
0 or 1 (open or closed) for $2 \times 2 / 1 \times 2$ switches

The default state of each 1×4 multiplexer with no relays energized is for channel 0 (of each multiplexer) to be connected to the common. Therefore, there exists an implied closure. For example, if channel 032 of module 4 is connected and the command is issued:

OPEN (@4(032))
The implied closure is for channel 030 of module 4 to be connected.

Also, if the following command is issued:

> CLOSE (@4(030,031,032))

Channel 032 will be the only channel closed, since it is the last channel in the range within the same mux.

The following examples illustrate the use of the channel descriptors for 1×4 switches on the 1260-23:

OPEN (@6(002)) Open channel 2 of Mux 0 on the 1260-23 that has module address 6 (channel 000 is connected by default).

CLOSE (@4(021,032)) Close channels 1 of Mux 2 and 2 of Mux 3 on the 1260-23 that has module address 4.

The following examples illustrate the use of the channel descriptors for $2 \times 2 / 1 \times 2$ switches on the 1260-23:

OPEN (@10(5))	Open channel 5 on the 1260-23 that has module address 10.
CLOSE (@10(5, 7))	Close channels 5 and 7 on the $1260-23$ that has module address
CLOSE (@5(5:7))	Close channels 5 through 7, inclusive, on the 1260-23 that has module address 5.

> Reply To The MOD:LIST? Command

The 1260-01T returns a reply to the MOD:LIST? command. This reply is unique for each different 1260 series switch module. The syntax for the reply is:
<module address> : <module-specific identification string>
The <module-specific identification string> for the 1260-23 is:
1260-23 5 1X4 2 2X2 1 1X2 25A POWER SWITCH
So, for a 1260-23 whose <module address> is set to 6, the reply to this query would be:

```
6 : 1260-23 5 1X4 2 2X2 1 1X2 25A POWER SWITCH
```

Operating The 1260-23 in Register-Based Mode

In register-based mode, the 1260-23 is operated by directly writing to control registers and reading from status registers on the 126023 module. There are three control registers and three status registers on the 1260-23 module. Relay Control Registers 0 control two 1x4 switches. Relay Control Registers 1 control another two 1×4 switches. Relay Control Register 2 controls one 1×4 switch, two 2×2 ganged switches, and one 1×2 switch. When a control register is written to, all channels controlled by that register are operated simultaneously. Writing a ' 1 ' to the register bit will activate the relay coil and put it into the NO position. Writing a ' 0 ' to the register bit will deactivate the relay coil and put it back into the NC position. Default value for all control registers is hex ' 00 ' after reset.

The status registers contain the Read Back bits from the coil voltage. Since a 1×4 switch is comprised of three SPDT relays, three status bits are required for each 1×4 switch. Refer to Figure $3-3$ for the relay order that comprises a 1×4 switch. The 2×2 and 1×2 switches require only one status bit each. Refer to Figure 3-4 for the relay order that comprises 1×2 and 2×2 switches.

The Read Back status reads the coil value for each relay inverted. When the relay coil is deactivated by setting the relay control bit to ' 0 ' (switch is in the Normally Closed position) the Read Back bit is ' 0 '. When the relay coil is activated by setting the relay control bit to ' 1 ' (switch is in the Normally Open position) the Read Back bit is '1'.

The control registers are located in the VXI bus A24 Address Space. The A24 address for a control register depends on:

1. The A24 Address Offset assigned to the 1260-01T module by the Resource Manager program. The Resource Manager program is provided by the VXI bus slot-0 controller vendor. The A24 Address Offset is placed into the "Offset Register" of the 1260-01T by the Resource Manager.
2. The <module address> of the 1260-23 module. This is a value in the range 1 through 12.
3. Each control register/status register on the 1260-23 has a unique address.

The base A24 address for the 1260-23 module may be calculated by:
(A24 Offset of Option-01T) + (1024 x Module Address of 1260-23).

The A24 address offset is usually expressed in hexadecimal. A typical value of 204000_{16} is used in the examples that follow.

A 1260-23 with a module address of 6 would have the base A24 address computed as follows:

$$
\begin{aligned}
& \text { Base A24 Address of } 1260-23=204000_{16}+\left(400_{16} \times 6_{10}\right) \\
& =205800_{16}
\end{aligned}
$$

The control registers for 1260-Series VXI modules are always on odd-numbered A24 addresses. The two control registers for the 1260-23 reside at the first two odd-numbered A24 addresses for the module:
(Base A24 Address of 1260-23) $+1=$ Control Reg. 0
(Base A24 Address of 1260-23) +3 = Control Reg. 1
So, for our example, the two control registers are located at:

205801 Control Register 0
205803 Control Register 1

Refer to Figure 3-3 for 1×4 channel nomenclature, Figure 3-4 for 2×2 channel nomenclature, and Figure 3-5 for 1×2 channel nomenclature when determining channel assignments.

Table 3-1 shows the channel assignments for each control register while Table 3-2 shows the channel assignments for each status register. Table 3-3 shows the register values for programming the 1260-23 module.

Relay Nodes for Path Reference

4XX-Y Where:
$4=1 \times 4$ Mux
XX = Switch (Channel) \#
Y = Relay Node (C for COM)

Figure 3-3, 1X4 Switch

Relay Nodes for Path Reference

2GXXS-Y
2G = 2x2 Software-ganged Mux
XXA = Switch A
XXB = Switch B
$\mathrm{Y}=$ Relay Node (C for COM)

Relay Nomenclature for Command Writes
2GXXRY Where:
2G = 2x2 Software-ganged Mux
XX = Switch
$\mathrm{R}=$ Relay
$\mathrm{Y}=$ Relay \# within Switch

Relay Nomenclature for Status Reads
2GXXRY-ZZ Where:
$2 G=2 \times 2$ Software-ganged Mux
XX = Switch
$\mathrm{R}=$ Relay
$Y=$ Relay \# within Switch
$\mathrm{ZZ}=\mathrm{NC}$ or NO

Figure 3-4, 2X2 Switch

Relay Nodes for Path Reference
2XX-Y Where:
$2=1 \times 2 \mathrm{Mux}$
$X X=$ Switch
Y = Relay Node (C for COM)

Relay Nomenclature for Command Writes Relay Nomenclature for Status Reads

2XXRY Where:
$2=1 \times 2$ Mux
XX = Switch
$\mathrm{R}=$ Relay
$\mathrm{Y}=$ Relay \# within Switch

2XXRY-ZZ Where:
$2=1 \times 2$ Mux
XX = Switch
$\mathrm{R}=$ Relay
Y = Relay \# within Switch
$\mathrm{ZZ}=\mathrm{NC}$ or NO

Figure 3-5, 1X2 Switch

Table 3-1, Control Register Channel Assignments

Control Register	Channels							
	$\begin{gathered} \hline \text { Bit } 7 \\ \text { (MSB) } \\ \hline \end{gathered}$	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	$\begin{gathered} \text { Bit } 0 \\ \text { (LSB) } \end{gathered}$
0	X	X	Switch 1 Relay 2 (401R2)	Switch 1 Relay 1 (401R1)	Switch 1 Relay 0 (401R0)	Switch 0 Relay 2 (400R2)	Switch 0 Relay 1 (400R1)	Switch 0 Relay 0 (400R0)
1	X	X	Switch 3 Relay 1 (403R1)	Switch 3 Relay 1 (403R1)	Switch 3 Relay 0 (403R0)	Switch 2 Relay 2 (402R2)	Switch 2 Relay 1 (402R1)	Switch 2 Relay 0 (402R0)
2	X	Switch 7 Relay 0 (207R0)	Switch 6 Ganged (2G06R0)	Switch 5 Ganged (2G05R0)	X	Switch 4 Relay 2 (404R2)	Switch 4 Relay 1 (404R1)	Switch 4 Relay 0 (404R0)

Table 3-2, Status Register Channel Assignments

Control Register	Channels							
	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	$\begin{aligned} & \text { Bit } 0 \\ & \text { (LSB) } \end{aligned}$
0	X	X	Switch 1 Relay 2 (401R2)	Switch 1 Relay 1 (401R1)	Switch 1 Relay 0 (401R0)	Switch 0 Relay 2 (400R2)	Switch 0 Relay 1 (400R1)	Switch 0 Relay 0 (400R0)
1	X	X	Switch 3 Relay 1 (403R1)	Switch 3 Relay 1 (403R1)	Switch 3 Relay 0 (403R0)	Switch 2 Relay 2 (402R2)	Switch 2 Relay 1 (402R1)	Switch 2 Relay 0 (402R0)
2	X	Switch 7 Relay 0 (207R0)	Switch 6 Ganged (2G06R0)	Switch 5 Ganged (2G05R0)	X	Switch 4 Relay 2 (404R2)	Switch 4 Relay 1 (404R1)	Switch 4 Relay 0 (404R0)

Table 3-3, Registers Values

Channel \#	Switch \#	Channel Path		Write (Command)		Read (Status)		Refer to Figure
		From	To	Reg. \#	Value (Binary)	Reg. \#	Value (Binary)	
00	0	400-C	400-0	0	xxxxx000	0	xxxxx111	3-3
01	0	400-C	400-1	0	xxxxx010	0	xxxxx101	3-3
02	0	400-C	400-2	0	xxxxx001	0	xxxxx110	3-3
03	0	400-C	400-3	0	xxxxx101	0	xxxxx010	3-3
10	1	401-C	401-0	0	xx000xxx	0	xx111xxx	3-3
11	1	401-C	401-1	0	xx010xxx	0	xx101xxx	3-3
12	1	401-C	401-2	0	xx001xxx	0	xx110xxx	3-3
13	1	401-C	401-3	0	xx101xxx	0	xx010xxx	3-3
20	2	402-C	402-0	1	xxxxx000	1	xxxxx111	3-3
21	2	402-C	402-1	1	xxxxx010	1	xxxxx101	3-3
22	2	402-C	402-2	1	xxxxx001	1	xxxxx110	3-3
23	2	402-C	402-3	1	xxxxx101	1	xxxxx010	3-3
30	3	403-C	403-0	1	xx000xxx	1	xx111xxx	3-3
31	3	403-C	403-1	1	xx010xxx	1	xx101xxx	3-3
32	3	403-C	403-2	1	xx001xxx	1	xx110xxx	3-3
33	3	403-C	403-3	1	xx101xxx	1	xx010xxx	3-3
40	4	404-C	404-0	2	xxxxx000	2	xxxxx111	3-3
41	4	404-C	404-1	2	xxxxx010	2	xxxxx101	3-3
42	4	404-C	404-2	2	xxxxx001	2	xxxxx110	3-3
43	4	404-C	404-3	2	xxxxx101	2	xxxxx010	3-3
5	5	2G05-C	2G05-0	2	xxx0xxxx	2	xxx1xxxx	3-4
5	5	2G05-C	2G05-1	2	xxx1xxxx	2	xxx0xxxx	3-4
6	6	2G06-C	2G06-0	2	xx0xxxxx	2	xx1xxxxx	3-4
6	6	2G06-C	2G06-1	2	xx1xxxxx	2	xx0xxxxx	3-4
7	7	207-C	207-0	2	x0xxxxxx	2	x1xxxxxx	3-5
7	7	207-C	207-1	2	x1xxxxxx	2	x0xxxxxx	3-5

This page was left intentionally blank.

Chapter 4

PRODUCT SUPPORT

Product Support

Reshipment Instructions

Racal Instruments has a complete Service and Parts Department. If you need technical assistance or should it be necessary to return your product for repair or calibration, call 1-800-722-3262. If parts are required to repair the product at your facility, call 1-949-859-8999 and ask for the Parts Department.

When sending your instrument in for repair, complete the form in the back of this manual.

For worldwide support and the office closes to your facility, refer to the Support Offices section on the following page.

Use the original packing material when returning the 1260-23 to Racal Instruments for calibration or servicing. The original shipping container and associated packaging material will provide the necessary protection for safe reshipment.

If the original packing material is unavailable, contact Racal Instruments Customer Service for information.

Support Offices

RACAL INSTRUMENTS

United States

(Corporate Headquarters and Service Center) 4 Goodyear Street, Irvine, CA 92618
Tel: (800) 722-2528, (949) 859-8999; Fax: (949) 859-7139
5730 Northwest Parkway Suite 700, San Antonio, TX 78249
Tel: (210) 699-6799; Fax: (210) 699-8857

Europe

(European Headquarters and Service Center)
18 Avenue Dutartre, 78150 LeChesnay, France
Tel: +33 (0)1 392322 22; Fax: +33 (0)1 39232225
29-31 Cobham Road, Wimborne, Dorset BH21 7PF, United Kingdom Tel: +44 (0) 1202 872800; Fax: +44 (0) 1202870810

Via Milazzo 25, 20092 Cinisello B, Milan, Italy
Tel: +39 (0)2 6123 901; Fax: +39 (0)2 61293606
Racal Instruments Group Limited, Technologie Park, D-51429 Bergisch Gladbach, Germany Tel: +49 2204 844205; Fax: +49 2204844219

Repair and Calibration Request Form

To allow us to better understand your repair requests, we suggest you use the following outline when calling and include a copy with your instrument to be sent to the Racal Repair Facility.

Model Serial No \qquad Date \qquad
Company Name \qquad Purchase Order \# \qquad
Billing Address \qquad City

State/Province	Zip/Postal Code	Country
Shipping Address		
	City	
State/Province	Zip/Postal Code	Country
Technical Contact	Phone Number (
Purchasing Contact	_Phone Number (

1. Describe, in detail, the problem and symptoms you are having. Please include all set up details, such as input/output levels, frequencies, waveform details, etc.
\qquad
\qquad
2. If problem is occurring when unit is in remote, please list the program strings used and the controller type.
\qquad
\qquad
\qquad
3. Please give any additional information you feel would be beneficial in facilitating a faster repair time (i.e., modifications, etc.)

4. Is calibration data required? Yes No (please circle one)
Call before shipping \quad Ship instruments to nearest support office. Note: We do not accept "collect" shipments.

